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Introduction
Many epidemiologic studies have reported 
positive associations between short-term 
exposure to ambient fine particulate matter 
(PM) air pollution, PM < 2.5 μm in aero-
dynamic diameter (PM2.5), and increased 
mortality and morbidity (Dominici et  al. 
2006; Samoli et  al. 2013; Stafoggia et  al. 
2013). PM2.5, constituents of which include 
metal oxides, sulfate, organic carbon (OC), 
and elemental carbon (EC) (Bell et al. 2007), 
varies geographically in chemical composition 
depending on its natural and/or anthropo-
genic generating sources (Hackstadt and Peng 
2014; Hopke et al. 2006). Individual PM2.5 
chemical constituents vary in their associations 
with adverse health outcomes (Krall et al. 2013; 
Ostro et al. 2008; Sarnat et al. 2015). Because 
PM2.5 sources emit mixtures of chemical 
constituents, source-specific PM2.5 also varies 
in its associations with adverse health outcomes 
(Ito et al. 2006; Mar et al. 2006; Sarnat et al. 
2008). Estimated associations between source-
specific PM2.5 and health have varied among 
previous studies, which have primarily used 

data from one city or from a few communities 
(Bell et al. 2014; Mar et al. 2006; Sarnat et al. 
2008). Multicity studies provide the means to 
fully compare estimated associations of source-
specific PM2.5 across cities. Understanding 
which PM2.5 sources are the most toxic could 
help inform targeted reduction and possibly 
regulation of ambient PM2.5, which at the 
present time is regulated by total mass concen-
tration via the U.S. National Ambient Air 
Quality Standards (NAAQS).

Conducting epidemiologic studies of 
PM2.5 sources is challenging because source-
specific ambient PM2.5 cannot be directly 
measured and must be estimated using 
methods such as source apportionment 
models. Standard source apportionment 
models estimate source-specific PM2.5 sepa-
rately for each ambient monitor using PM2.5 
constituent concentrations. In multicity 
studies, PM2.5 sources estimated separately 
at each ambient monitor must be matched 
between monitors, which is difficult because 
PM2.5 sources can vary between cities in both 
chemical composition and concentration (Ito 

et al. 2004; Sarnat et al. 2008). For cities 
located far apart from each other, the chemical 
composition of some PM2.5 sources may vary 
between cities because of local differences in 
industry, types of vehicles, or other factors.

Previously observed city-to-city hetero
geneity in PM–health associations (Samet et al. 
2000; Franklin et al. 2007) may be driven by 
differences in population or exposure char-
acteristics, such as susceptibility or air condi-
tioning use, respectively, or by differences 
between cities in the chemical composition 
of source-specific PM2.5. We can eliminate 
some of this between-city variation by only 
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Background: Short-term exposure to ambient fine particulate matter (PM2.5) concentrations has 
been associated with increased mortality and morbidity. Determining which sources of PM2.5 are 
most toxic can help guide targeted reduction of PM2.5. However, conducting multicity epidemio-
logic studies of sources is difficult because source-specific PM2.5 is not directly measured, and source 
chemical compositions can vary between cities.

Objectives: We determined how the chemical composition of primary ambient PM2.5 sources 
varies across cities. We estimated associations between source-specific PM2.5 and respiratory 
disease emergency department (ED) visits and examined between-city heterogeneity in estimated 
associations.

Methods: We used source apportionment to estimate daily concentrations of primary source-
specific PM2.5 for four U.S. cities. For sources with similar chemical compositions between cities, 
we applied Poisson time-series regression models to estimate associations between source-specific 
PM2.5 and respiratory disease ED visits.

Results: We found that PM2.5 from biomass burning, diesel vehicle, gasoline vehicle, and dust 
sources was similar in chemical composition between cities, but PM2.5 from coal combustion 
and metal sources varied across cities. We found some evidence of positive associations of respira-
tory disease ED visits with biomass burning PM2.5; associations with diesel and gasoline PM2.5 
were frequently imprecise or consistent with the null. We found little evidence of associations 
with dust PM2.5.

Conclusions: We introduced an approach for comparing the chemical compositions of PM2.5 
sources across cities and conducted one of the first multicity studies of source-specific PM2.5 and 
ED visits. Across four U.S. cities, among the primary PM2.5 sources assessed, biomass burning 
PM2.5 was most strongly associated with respiratory health.
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comparing estimated health effect associa-
tions of sources whose chemical compositions 
do not vary substantially between cities. By 
restricting our analysis to sources with similar 
chemical composition across cities, we can 
better compare estimated health effect asso-
ciations of the same exposures, that is to say, 
source-specific PM2.5, across cities.

Although most U.S. studies of source-
specific PM2.5 have used data from only one 
or two ambient monitors (Hopke et al. 2006; 
Sarnat et al. 2008), a few multicommunity 
epidemiologic studies of source-specific PM2.5 
have been conducted. Bell et al. (2014) esti-
mated source-specific PM2.5 using data from 
five ambient monitors in Massachusetts and 
Connecticut, although the monitors were 
located in four contiguous counties and likely 
measured similar sources. Ito et al. (2013) 
estimated source-specific PM2.5 across 64 
U.S. cities but did not quantify how similar 
the sources were between cities. Although 
these multicity studies estimated associations 
between source-specific PM2.5 and health, a 
more comprehensive evaluation of how the 
chemical composition of PM2.5 sources varies 
across cities is still needed.

We estimated associations between 
short-term exposure to source-specific 
PM2.5 and respiratory disease emergency 
department (ED) visits for four U.S. cities: 
Atlanta, Georgia; Birmingham, Alabama; St. 
Louis, Missouri; and Dallas, Texas. These 
cities, which are located in the southern and 
midwestern United States, likely have some 
PM2.5 sources that are similar in chemical 
composition across cities, but others may differ 
because of the presence of different industries, 
varying meteorology, or other factors. We 
focused on primary PM2.5 sources, such as 
traffic and coal combustion, which emit PM2.5 
directly. Separately for each city, we estimated 
source-specific PM2.5 and then identified those 
sources with similar chemical compositions 
across cities. For similar sources, we estimated 
associations between source-specific PM2.5 and 
respiratory disease ED visits. In this paper, we 
report how source apportionment results can 
be compared between cities in epidemiologic 
studies of air pollution, and we present the 
first multicity U.S. study of the associations 
between primary source-specific PM2.5 and 
respiratory disease ED visits.

Methods

Data

We obtained electronic billing data for respi-
ratory disease ED visits for all ages at acute 
care hospitals in the 20-county Atlanta metro-
politan area, the 7-county Birmingham metro-
politan area, the 8 Missouri and 8 Illinois 
counties in the St. Louis metropolitan area, 
and the 12-county Dallas metropolitan area. 

Previous studies described the data collec-
tion for Atlanta (Sarnat et al. 2010) and St. 
Louis (Sarnat et al. 2015). Using diagnosis 
codes from the International Classification of 
Diseases, 9th Revision (ICD-9), we considered 
subcategories of respiratory diseases including 
pneumonia (ICD-9 codes 480–486), chronic 
obstructive pulmonary disease (COPD) (491, 
492, 496), upper respiratory infection (URI) 
(460–465, 466.0, 477), and asthma and/or 
wheeze (493, 786.07). We created a combined 
category of daily respiratory disease ED visits 
by adding the number of daily ED visits for 
these subcategories and including additional 
ICD-9 codes for bronchiolitis (466.1, 466.11, 
466.19). We used ED visit data in accordance 
with our data use agreements with the Georgia 
Hospital Association, the Missouri Hospital 
Association, the Dallas–Fort Worth Hospital 
Council Foundation, and selected individual 
hospitals. The Emory University Institutional 
Review Board approved this study and granted 
an exemption from informed consent require-
ments, given the minimal risk nature of 
the study and the infeasibility of obtaining 
informed consent from individual patients for 
> 1.8 million billing records.

We obtained concentrations for PM2.5 
mass and PM2.5 constituents from one urban, 
ambient monitor located in each city for the 
following time periods: Jefferson Street in 
Atlanta from 1999–2009, North Birmingham 
in Birmingham from 2004–2010, Blair Street 
in St. Louis from 2001–2007, and Hinton 
Street in Dallas from 2006–2009.

Daily pollution data were available in 
Atlanta; however, data were only available 
approximately every third day in the remaining 
three cities. To ensure estimated sources more 
closely resembled known PM2.5 sources, our 
source apportionment models incorporated 
additional data including concentrations of 
gaseous pollutants and, when available, the 
Community Multiscale Air Quality with 
Tracers (CMAQ-TR) model (Baek 2009). 
We obtained meteorological data for each city, 
including temperature and relative humidity, 
from the National Climatic Data Center.

Source Apportionment
Source apportionment models generally 
assume that observed PM2.5 constituent 
concentrations X are formed as a linear combi-
nation of source profiles Λ, the chemical compo-
sition of each source, and daily concentrations 
of source-specific PM2.5 F, plus some indepen-
dent error ε; that is, X = ΛF + ε. We used an 
ensemble approach to estimate city-specific 
ensemble-based source profiles (EBSPs). The 
EBSPs are then used in chemical mass balance 
with gas constraints (CMB-GC) to estimate 
concentrations of source-specific PM2.5, a 
process which is described in detail elsewhere 
(Balachandran et al. 2012; Lee et al. 2009).

To estimate source profiles for each city, 
the EBSP approach uses a weighted average of 
several source apportionment models. Because 
of the variations in available information 
across cities, we used a different set of source 
apportionment models for each city, including 
CMB with molecular markers (Atlanta and 
St. Louis), CMB-GC (Marmur et al. 2005) 
(all cities), the CMAQ-TR model (Atlanta, 
Birmingham, and St. Louis), positive matrix 
factorization (PMF) (Paatero and Tapper 
1994) (all cities), and PMF using molecular 
markers (St. Louis). These source apportion-
ment methods have been used in other studies 
of source-specific PM2.5 and are described else-
where (Maier et al. 2013; Sarnat et al. 2008). 
By using multiple source apportionment 
methods in each city, we were able to leverage 
the advantages of each method. To account for 
differences in source-specific PM2.5 between 
summer and winter months, EBSPs were esti-
mated separately for warm and cold seasons 
using data from July and January, respectively. 
Two months were used because these were the 
only months for which results were available 
for CMAQ and CMB with molecular markers.

Concentrations of source-specific PM2.5 
were estimated separately for each city using 
CMB-GC, which uses gaseous pollutants to 
improve estimates of source-specific PM2.5 
(Marmur et al. 2005). The winter EBSPs were 
used to estimate concentrations of source-
specific PM2.5 for November through March, 
and the summer EBSPs were used to estimate 
concentrations for the remaining months. 
Because the same approach (CMB-GC) was 
used to estimate source concentrations for 
each city, sources with similar EBSPs were 
compared between cities despite incorporating 
different source apportionment methods. 
Although secondary PM2.5 sources were 
not the focus of this study, source profiles 
for secondary sources were also included in 
the CMB-GC.

To assess similarity among the chemical 
compositions of source-specific PM2.5 across 
cities, we compared the proportions of each 
PM2.5 constituent in each source using normal-
ized root mean squared differences (nRMSDs) 
of the EBSPs, which were normalized by the 
average range (maximum–minimum) within 
EBSPs for each source (Marzo 2014). We 
also used correlations to indicate whether 
PM2.5 constituents in each estimated source 
were linearly associated. The correlations and 
nRMSDs were computed by comparing EBSPs 
for a particular source between two cities, 
separately for winter and summer EBSPs, and 
summarizing across pairwise comparisons 
between cities for each season using the average, 
minimum, and maximum values. To assess 
similarity between EBSPs for each source, we 
used a 10% cutoff in the maximum nRMSD 
across pairwise comparisons.



Source-specific PM2.5 and respiratory ED visits

Environmental Health Perspectives  •  volume 125 | number 1 | January 2017	 99

Associations with ED Visits
To estimate associations between short-
term exposure to source-specific PM2.5 and 
respiratory disease ED visits, we applied 
overdispersed Poisson time-series regres-
sion models to data from each city control-
ling for potential confounders as in previous 
studies of PM2.5 and cardiorespiratory ED 
visits (Winquist et  al. 2015). Specifically, 
we included indicator variables for holidays, 
day of the week, season, and the hospitals 
reporting data for each day. We controlled for 
meteorology using separate cubic polynomials 
for same-day (lag 0) maximum temperature, 
the mean of previous-day and 2 days before 
(lags 1–2) minimum temperature, and the 
mean of lags 0–2 dewpoint temperature. We 
controlled for long-term trends in ED visits 
using cubic splines of time with one degree 
of freedom per month. Last, we incorporated 
pairwise interaction terms between season and 
each of the following: maximum temperature, 
weekdays, and federal holidays. We estimated 
associations separately for each source for 
single-day exposures at lags 0, 1, 2, and 3. 
Because we did not have daily source-specific 
PM2.5 concentrations for Birmingham, St. 
Louis, and Dallas, we could not estimate 
exposures across multiple days. We scaled 
the resulting relative risks by the median of 
the city-specific interquartile ranges (IQR) 
corresponding to each source. We only esti-
mated associations between source-specific 
PM2.5 and ED visits for those sources that 
had similar chemical compositions across 
cities based on the nRMSD. We compared 
estimated health effect associations across 
cities using chi-squared tests of heterogeneity 
(Kleinbaum et al. 1982; Rothman et al. 2008).

The estimated chemical composition of 
source-specific PM2.5 from source appor-
tionment models may not correspond well 
to the true source chemical composition in 
each city. We explored an alternative approach 
by estimating health effect associations 
corresponding to individual “tracer” PM2.5 
chemical constituents known to be emitted 
from various PM2.5 sources. Inconsistencies 
between estimated associations of source-
specific PM2.5 and estimated associations of 
tracer PM2.5 constituents may indicate that 
estimated source-specific PM2.5 may not 
correspond well to known PM2.5 sources.

Sensitivity Analysis
As a sensitivity analysis, we estimated associa-
tions separately for subcategories of respiratory 
diseases including pneumonia, COPD, URI, 
and asthma/wheeze. To determine whether 
our results were sensitive to the confounders 
included in our health effects regres-
sion models, we compared our results with 
those from models without product terms, 
without dewpoint temperature, without lag 

1–2 minimum temperature, without season, 
without holidays, and without holidays and 
weekdays. To investigate possible exposure 
misclassification, we compared our analysis 
of ED visits for patients residing in all 
counties of the surrounding metropolitan 
area with analyses using only ED visits from 
patients residing in the county or counties 
closest to each city center, which contained 
the ambient monitoring site (DeKalb and 
Fulton Counties, Atlanta; Jefferson County, 
Birmingham; St. Louis County and St. Louis 
City, St. Louis; Dallas County, Dallas).

The EBSPs were derived based on the 
source apportionment results that could be 
obtained for each city. For example, some 
source apportionment models, such as CMB 
with molecular markers, require more data 
than we had readily available for some cities. 
To determine whether our results were sensi-
tive to the varying combinations of source 
apportionment methods across cities, we also 
estimated source profiles using a standard 
CMB approach in each city.

Results

Source Apportionment

Across four U.S. cities, we identified six 
primary PM2.5 sources including biomass 
burning, diesel vehicles, gasoline vehicles, dust, 
coal combustion, and metals, although each 
source was not identified in all cities. We did 
not identify a coal combustion source in St. 
Louis, nor did we identify a metals source in 
Atlanta and Dallas, although the remaining 

sources were present in all four cities. The 
metals source is a composite source representing 
industrial facilities such as steel processing (Lee 
et al. 2006). The estimated city- and season-
specific EBSPs, which are unitless but can be 
interpreted as the amount (in micrograms/
cubic meter) of each constituent per micro-
gram/cubic meter of source-specific PM2.5, are 
displayed in Figures S1 and S2. We summa-
rized differences in EBSPs using N pairwise 
comparisons between cities for each season, 
which yielded N correlations and N nRMSDs 
for each source (Table 1). For the EBSPs corre-
sponding to biomass burning, diesel vehicles, 
gasoline vehicles, and dust, the maximum 
nRMSD across pairwise comparisons was 
< 10% and their correlations were also close to 
1, suggesting strong similarity in these sources 
across cities. The EBSPs for coal combustion 
and metals varied between cities, with the 
maximum nRMSD > 10% and smaller correla-
tions; therefore, we did not compare their esti-
mated associations with ED visits across cities 
(Table 1; see also Figures S1 and S2).

For each city, we estimated concentrations 
of source-specific PM2.5 for 3,624 days in 
Atlanta, 808 days in Birmingham, 728 days 
in St. Louis, and 332 days in Dallas. Table 2 
shows the average concentrations and standard 
deviations (micrograms/cubic meter) of source-
specific PM2.5 for each city. For primary PM2.5 
sources, we found that the greatest concen-
trations corresponded to biomass burning. 
Correlations between concentrations of source-
specific PM2.5 and PM2.5 mass were generally 
small to moderate (see Table S1).

Table 1. A comparison of ensemble-based source profiles for warm and cold seasons for Atlanta, 
Georgia; Birmingham, Alabama; St. Louis, Missouri; and Dallas, Texas.

Source of PM2.5

Number 
of citiesa Correlationb nRMSD (%)c

Pairwise 
comparisonsd

Biomass burning 4 0.99 (0.97, 1.00) 4.20 (2.04, 6.35) 12
Diesel vehicles 4 1.00 (1.00, 1.00) 2.30 (1.44, 3.66) 12
Gasoline vehicles 4 1.00 (1.00, 1.00) 2.10 (0.93, 3.54) 12
Dust 4 1.00 (0.99, 1.00) 2.52 (1.20, 4.26) 12
Coal combustion 3 0.69 (0.48, 0.98) 23.80 (11.45, 30.65) 6
Metals 2 0.67 (0.59, 0.74) 38.77 (37.46, 40.08) 2

Notes: nRMSD, normalized root mean squared difference.
aNumber of cities where each source was identified.
bAverage (minimum, maximum) correlation between EBSPs across cities for each season.
cAverage (minimum, maximum) percent nRMSD comparing EBSPs across cities for each season.
dNumber of pairwise comparisons made for EBSPs between cities for each season.

Table 2. Average (standard deviation) concentration and median of city-specific interquartile ranges in 
micrograms/cubic meter for PM2.5 mass and primary source-specific PM2.5 for four U.S. cities.a

Pollutant Atlanta, GA Birmingham, AL St. Louis, MO Dallas, TX IQR
PM2.5 mass 15.55 (7.82) 17.00 (9.25) 13.56 (7.07) 10.71 (4.62) 9.16
Biomass burning 1.60 (1.17) 1.05 (1.04) 1.31 (0.95) 1.36 (0.95) 0.95
Diesel vehicles 1.19 (1.16) 1.02 (1.32) 0.72 (0.80) 0.30 (0.52) 1.11
Gasoline vehicles 1.01 (0.94) 0.70 (0.75) 1.11 (0.61) 0.48 (0.38) 0.72
Dust 0.43 (0.44) 0.60 (0.72) 0.46 (0.69) 0.65 (1.08) 0.33
Coal combustion 0.13 (0.12) 0.23 (0.30) — 0.01 (0.02) 0.13
Metals — 0.64 (0.57) 0.23 (0.24) — 0.43

Notes: IQR, interquartile range; PM2.5, fine particulate matter
aAvailable days of source-specific PM2.5: 3,624 days for Atlanta, Georgia; 808 days for Birmingham, Alabama; 728 days 
for St. Louis, Missouri; and 332 days for Dallas, Texas.
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Associations with ED Visits
The average number of daily ED visits for 
combined respiratory diseases was 361 
(standard deviation = 129) for Atlanta, 59 
(27) for Birmingham, 281 (81) for St. Louis, 
and 455 (159) for Dallas (see Table S2). In 
each city, the majority of daily respiratory 
disease ED visits were for URI.

Figure 1 shows the estimated relative risks 
and 95% confidence intervals (CIs) for an 
interquartile range (IQR) increase in PM2.5 
mass and PM2.5 from biomass burning, 
diesel vehicles, gasoline vehicles, and dust for 
single-day lags 0 to 3. We did not compare 
associations across cities for PM2.5 from coal 
combustion or metals because their EBSPs 
varied substantially between cities (Table 1). 
For PM2.5 mass, associations with respira-
tory disease ED visits were frequently positive 
and statistically significant across cities, 
although the lag of greatest association varied 
between cities. For lag 2, the relative risk of 
respiratory disease ED visits associated with 
an IQR increase in PM2.5 mass was 1.006 
(95% CI: 1.001, 1.010) for Atlanta, 1.008 
(95% CI: 1.002, 1.014) for Birmingham, 
1.008 (95% CI: 1.002, 1.014) for St. Louis, 
and 1.003 (95% CI: 0.993, 1.014) for Dallas. 
Associations for PM2.5 from biomass burning 
were positive and were frequently greater in 

magnitude than for other sources. The relative 
risk associated with an IQR increase in lag 
2 PM2.5 from biomass burning was 1.006 
(95% CI: 1.003, 1.010) for Atlanta, 1.008 
(95% CI: 0.996, 1.019) for Birmingham, 
1.007 (95% CI: 0.999, 1.016) for St. Louis, 
and 1.001 (95% CI: 0.989, 1.013) for Dallas.

For PM2.5 from diesel vehicles and 
gasoline vehicles, estimated associations were 
inconsistent across cities and lags with many 
near-null associations or associations with 
large standard errors. Across lags, the esti-
mated associations in St. Louis were more 
positive for gasoline vehicles than for diesel 
vehicles. Associations with diesel and gasoline 
vehicles in Dallas had larger confidence 
intervals than other sources, which may be 
explained by the relatively low temporal vari-
ability of PM2.5 from these sources. Across 
cities and exposure lags, we did not find 
evidence that PM2.5 from dust was associated 
with respiratory disease ED visits. Using chi-
squared tests of heterogeneity, we did not find 
evidence that estimated associations differed 
across cities for any PM2.5 source at any lag.

We selected tracer constituents to corre-
spond to our identified sources based on Sarnat 
et al. (2008), including potassium for PM2.5 
from biomass burning, EC for PM2.5 from 
diesel vehicles, zinc for PM2.5 from gasoline 

vehicles, and silicon for PM2.5 from dust. 
We also examined OC, which is emitted by 
biomass burning, diesel vehicles, and gasoline 
vehicles, but is not associated with dust PM2.5. 
Although none of these constituents is gener-
ated solely by the specified source categories, 
they can be used to help interpret the source-
specific results. Tables S3–S6 summarize the 
data for PM2.5 constituent tracers, including 
correlations between source-specific PM2.5 and 
tracer constituents (Table S6).

For each city, we estimated associations 
between tracer constituents and respiratory 
disease ED visits to assess consistency with the 
associations observed for source-specific PM2.5 
(Figure 2). For biomass burning PM2.5, the 
observed patterns of associations across cities 
and lags were similar to the patterns observed 
for potassium and OC, which are tracers for 
PM2.5 from biomass burning. Although we 
did not observe positive associations for diesel 
vehicles in Atlanta and Birmingham, we found 
some positive associations between EC and ED 
visits in these cities. EC, though generally a 
better tracer for diesel PM2.5 than for biomass 
burning PM2.5, was moderately correlated with 
biomass burning PM2.5 in these cities (0.42 and 
0.47, respectively). There was little evidence of 
association for zinc, a tracer for gasoline PM2.5, 
or silicon, a tracer for dust PM2.5, consistent 
with the source-specific results.

Sensitivity Analysis
We found that estimated health effect associa-
tions for subcategories of respiratory diseases 
had wider confidence intervals than those for 
combined respiratory diseases because there 
were fewer daily counts for each subcategory 
(see Figures S3–S6). We found some evidence 
of associations between PM2.5 from biomass 
burning and URI in all cities except Dallas, 
although the lag corresponding to the largest 
associations varied between cities.

We found that results were mostly consis-
tent across models with varying confounder 
control, although our estimated relative 
risks were frequently greater in magnitude 
in models without control for weekdays and 
holidays (results not shown). We did not 
find that restricting our analysis to patients 
residing in the counties closest to each city 
center and containing the PM2.5 monitoring 
sites substantially changed our results (results 
not shown). We also did not find that our 
estimated health effect associations substan-
tially changed when we used a standard CMB 
approach rather than the EBSP approach for 
estimating source-specific PM2.5.

Discussion
In a multicity U.S. study that examined the 
associations between primary source-specific 
PM2.5 and respiratory disease ED visits, we 
found some evidence of positive associations 

Figure 1. Estimated relative risks of respiratory disease emergency department (ED) visits for interquartile 
range (IQR) increases in fine particulate matter (PM2.5) mass and source-specific PM2.5 using single-day 
exposure lags 0 to 3 for Atlanta, Georgia; Birmingham, Alabama; St. Louis, Missouri; and Dallas, Texas.
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across cities for PM2.5 from biomass burning. 
The inconsistency in estimated associations 
for diesel and gasoline vehicles across cities 
might be driven by the spatial heterogeneity of 
mobile PM2.5 and the placement of monitors 
relative to roadways in each city. In addition, 
the large standard errors for PM2.5 from 
diesel and gasoline vehicles in Dallas are likely 
driven by the relatively low temporal variation 
in these sources (Table 2). Associations with 
PM2.5 from dust were smaller in magnitude 
and were frequently consistent with the null 
across cities. The lags where the associations 
were largest in magnitude varied between 
cities, which might be driven by between-city 
differences in hospital use. Between-city differ-
ences in estimated health effect associations 
of source-specific PM2.5 could also be driven 
by differences in their respective populations, 
including air conditioning use and suscepti-
bility (Bell et al. 2009; Ostro et al. 2008), or 
by differential exposure error.

Previous studies have estimated asso-
ciations between respiratory morbidity and 
source-specific PM2.5. Sarnat et  al. (2008) 
did not find evidence of positive associations 
between respiratory disease ED visits and 
PM2.5 from gasoline vehicles, diesel vehicles, 
wood smoke, or soil in Atlanta, but they used 
same-day exposure and had a shorter time 
frame than was available in the present study. 
Andersen et al. (2007) found that PM < 10 μm 
(PM10) from biomass burning was associated 
with increased respiratory hospital admissions 
in Copenhagen, Denmark. Gass et al. (2015) 
found positive associations between pediatric 
asthma ED visits in Atlanta and gasoline and 
diesel PM2.5; these associations were larger 
in magnitude than those found for biomass 
burning PM2.5. Other studies have found 
evidence of associations between respiratory 
hospitalizations and traffic PM2.5 (Ito et al. 
2013) and road dust PM2.5 (Bell et al. 2014), 
although these studies did not identify biomass 
burning as a source of PM2.5.

We observed positive associations 
between biomass burning PM2.5 and respi-
ratory ED visits, which corresponded well 
to observed associations for OC and potas-
sium. Although OC is emitted by biomass 
burning PM2.5, OC is also associated with 
mobile PM2.5 including PM2.5 from gasoline 
and diesel vehicles and secondary formation 
from gaseous emissions. OC consists of many 
organic compounds that could be used to 
differentiate the sources of OC, such as levo-
glucosan as an indicator of biomass burning; 
however, we did not have daily speciated OC 
data available for the entirety of this study. 
Speciated OC data were used in developing 
the source profiles used in our source appor-
tionment approach (Balachandran et  al. 
2013), and other studies have used speciated 
OC data (Zheng et  al. 2007). In general, 

estimated associations for source-specific 
PM2.5 had more uncertainty than estimated 
associations for PM2.5 constituents, likely 
because source-specific PM2.5 is estimated 
and is not directly measured.

We found that EBSPs for PM2.5 from 
biomass burning, diesel vehicles, gasoline 
vehicles, and dust were similar across cities, 
whereas greater differences existed for EBSPs 
for PM2.5 from coal combustion and metals 
(Table  1; see also Figures  S1 and S2). A 
previous study of the same urban ambient 
monitors in Atlanta and Birmingham also 
found the same PM2.5 sources to have similar 
chemical compositions between monitors (Lee 
et al. 2008). Correlations and nRMSDs are 
simple tools that can be applied to compare 
source profiles across cities; however, future 
work could develop statistical models 
that provide a more rigorous framework 
for comparing estimated PM2.5 sources 
across cities.

Although source apportionment models 
have been primarily developed for data from a 
single ambient monitor, two previous studies 
developed source apportionment models for 
multiple ambient monitors (Jun and Park 
2013; Thurston et al. 2011). These models 
may not be appropriate for multicity epide-
miologic studies because they fix source 
profiles across monitors. For example, in our 
study, we found that source profiles (EBSPs) 
for PM2.5 from coal combustion and metals 
varied across cities.

In source apportionment studies, we 
commonly estimate source-specific PM2.5 
but do not directly model the known PM2.5 
sources in each city (e.g., factories). Therefore, 
some sources estimated using source appor-
tionment might not exactly correspond to 
existing PM2.5 sources. Other methods, 
such as dispersion modeling, can be used 
to estimate source-specific PM2.5 across a 
community. However, these methods are 

Figure 2. Estimated relative risks of respiratory disease emergency department (ED) visits for interquartile 
range increases in selected tracer fine particulate matter (PM2.5) constituents using single-day exposure 
lags 0 to 3 for Atlanta, Georgia; Birmingham, Alabama; St. Louis, Missouri; and Dallas, Texas. The following 
tracers were selected: potassium (K) for biomass burning PM2.5, elemental carbon (EC) for diesel PM2.5, 
zinc (Zn) for gasoline PM2.5, silicon (Si) for dust PM2.5, and organic carbon (OC) for both mobile and 
burning PM2.5.
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generally not applied to time-series data and 
require information that may not be avail-
able for all communities. In contrast, source 
apportionment models can be readily applied 
to time series of PM2.5 constituent concen-
trations, which are measured in most urban 
areas at ambient monitors. Source appor-
tionment studies can also be used to identify 
groups of PM2.5 chemical constituents that 
are most harmful to human health to help 
focus future epidemiologic studies on relevant 
PM2.5 sources.

In this analysis, we did not propagate 
uncertainty from estimating source-specific 
PM2.5 into our estimated health associations. 
The EBSP approach provides uncertainties 
associated with estimating source-specific 
PM2.5, and future work could determine how 
to best incorporate these uncertainties in health 
effects regression models. Bayesian ensemble-
based source apportionment (Balachandran 
et  al. 2013; Gass et  al. 2015) and fully 
Bayesian models (Nikolov et al. 2007) could 
also be used to propagate the uncertainty from 
estimating source-specific PM2.5.

The approach we developed to compare the 
chemical composition of source-specific PM2.5 
across cities can be applied to examine city-to-
city heterogeneity in source-specific PM2.5 and 
how it might explain city-to-city heterogeneity 
in health effects of PM2.5 mass. In our study, 
chi-squared tests of heterogeneity did not reveal 
that estimated associations for source-specific 
PM2.5 varied across cities; however, longer 
time series may be needed to fully examine 
between-city differences. We were unable to 
examine city-to-city heterogeneity in estimated 
associations across cities using multilevel models 
because we were limited to data from four U.S. 
cities. Although national-level data on ED 
visits and source-specific PM2.5 are not readily 
available, future work incorporating such data 
from selected additional cities will be relevant to 
addressing this objective.

Our study of source-specific PM2.5 across 
four U.S. cities was limited by the amount of 
available data. We had data from one ambient 
monitor in each city, which did not allow 
us to examine spatiotemporal heterogeneity 
in PM2.5 mass or PM2.5 constituents across 
each city. In addition, we only had concen-
trations of PM2.5 chemical constituents to 
estimate source-specific PM2.5 every third 
day in Birmingham, St. Louis, and Dallas, 
which limited our ability to fit distributed lag 
models or models using multiday exposures. 
Lall et al. (2011) found stronger associations 
for cardiorespiratory hospital admissions 
using multiday lagged exposures; therefore, 
our estimated associations for single-day 
exposures may be smaller in magnitude than 
those associated with multiday exposures.

PM2.5 constituents have only been 
collected nationally since 2000 (U.S. EPA 

2009), and future work may be able to utilize 
longer time series to resolve observed differ-
ences in estimated associations between cities. 
Dallas had a shorter time series of data than 
the other cities investigated herein, with only 
332 days of source-specific PM2.5 spanning 
2006–2009, which led to broad confidence 
intervals for the estimated associations. For 
Atlanta and Birmingham, where longer time 
series were available, we observed somewhat 
more consistent results across lags (Figures 1 
and 2). Longer time series in each city would 
also improve our ability to estimate associa-
tions between source-specific PM2.5 and ED 
visits by age group.

To our knowledge, this is the first multi-
city study of primary source–specific PM2.5 
and ED visits. Larger, national-level studies 
are necessary to inform future NAAQS; 
however, we have provided a framework for 
comparing estimated source-specific PM2.5 
between cities.

Conclusions
In this multicity study of the associations 
between primary source–specific PM2.5 and 
ED visits for respiratory diseases, we found 
some evidence of positive associations across 
all cities with PM2.5 from biomass burning. 
Associations with PM2.5 from diesel and 
gasoline vehicle sources were less consistent 
across cities and lags, which could be driven 
by the spatial heterogeneity of the sources. 
There was little evidence of association with 
PM2.5 from dust. We found that PM2.5 from 
coal combustion and metal sources varied 
in chemical composition across cities, which 
presents challenges for comparing estimated 
health effect associations between cities. Our 
approach provides an analytic framework for 
multicity studies of PM2.5 sources to deter-
mine those sources most associated with 
adverse health outcomes and to help inform 
targeted reduction of ambient PM2.5.
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